2018-04-04
10:15 at HCP F 43.4This talk reviews differential equations on manifolds of matrices or tensors of low rank. They serve to approximate, in a low-rank format, large time-dependent matrices and tensors that are either given explicitly via their increments or are unknown solutions of high-dimensional differential equations, such as multi-particle time-dependent Schrödinger equations. Recently developed numerical time integrators are based on splitting the projector onto the tangent space of the low-rank manifold at the current approximation. In contrast to all standard integrators, these projector-splitting methods are robust with respect to the presence of small singular values in the low-rank approximation. This robustness relies on geometric properties of the low-rank manifolds. The talk is based on work done intermittently over the last decade with Othmar Koch, Bart Vandereycken, Ivan Oseledets, Emil Kieri and Hanna Walach. Dynamical low-rank approximation
Christian Lubich
Numerical Analysis Group, Department of Mathematics, Universität Tübingen, Germany
© Nov 2024 mk 719 entries